Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Inpaint example runtime error #127

Open
xv5kVu4FN opened this issue Apr 3, 2024 · 0 comments
Open

Inpaint example runtime error #127

xv5kVu4FN opened this issue Apr 3, 2024 · 0 comments

Comments

@xv5kVu4FN
Copy link

Hi! I'm trying to execute the controlnet.ipynb notebook for the inpaintint example and the execution raises a RuntimeError.

Input type (torch.FloatTensor) and weight type (CPUBFloat16Type) should be the same or input should be a MKLDNN tensor and weight is a dense tensor

Is there any way to make it work?

Thanks for your help!

  • OS: Windows 10 > Windows Subsystem for Linux (Ubuntu 20.04.6 LTS)
  • Models: Lite
  • DType: bfloat16
  • Traceback:
RuntimeError                              Traceback (most recent call last)
Cell In[17], line 15
     12 threshold = 0.2
     14 with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
---> 15     cnet, cnet_input = core.get_cnet(
     16         batch, models, extras, mask=mask, outpaint=outpaint, threshold=threshold
     17     )
     18     cnet_uncond = cnet
     20 show_images(batch[\"images\"])

File c:\\StableCascade\\train\\train_c_controlnet.py:149, in WurstCore.get_cnet(self, batch, models, extras, cnet_input, **kwargs)
    147         cnet_input_preview = cnet_input
    148     cnet_input, cnet_input_preview = cnet_input.to(self.device), cnet_input_preview.to(self.device)
--> 149 cnet = models.controlnet(cnet_input)
    150 return cnet, cnet_input_preview

File c:\\Users\\Me\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\torch\
n\\modules\\module.py:1518, in Module._wrapped_call_impl(self, *args, **kwargs)
   1516     return self._compiled_call_impl(*args, **kwargs)  # type: ignore[misc]
   1517 else:
-> 1518     return self._call_impl(*args, **kwargs)

File c:\\Users\\Me\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\torch\
n\\modules\\module.py:1527, in Module._call_impl(self, *args, **kwargs)
   1522 # If we don't have any hooks, we want to skip the rest of the logic in
   1523 # this function, and just call forward.
   1524 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
   1525         or _global_backward_pre_hooks or _global_backward_hooks
   1526         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1527     return forward_call(*args, **kwargs)
   1529 try:
   1530     result = None

File c:\\StableCascade\\modules\\controlnet.py:77, in ControlNet.forward(self, x)
     76 def forward(self, x):
---> 77     x = self.backbone(x)
     78     proj_outputs = [None for _ in range(max(self.proj_blocks) + 1)]
     79     for i, idx in enumerate(self.proj_blocks):

File c:\\Users\\Me\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\torch\
n\\modules\\module.py:1518, in Module._wrapped_call_impl(self, *args, **kwargs)
   1516     return self._compiled_call_impl(*args, **kwargs)  # type: ignore[misc]
   1517 else:
-> 1518     return self._call_impl(*args, **kwargs)

File c:\\Users\\Me\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\torch\
n\\modules\\module.py:1527, in Module._call_impl(self, *args, **kwargs)
   1522 # If we don't have any hooks, we want to skip the rest of the logic in
   1523 # this function, and just call forward.
   1524 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
   1525         or _global_backward_pre_hooks or _global_backward_hooks
   1526         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1527     return forward_call(*args, **kwargs)
   1529 try:
   1530     result = None

File c:\\Users\\Me\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\torch\
n\\modules\\container.py:215, in Sequential.forward(self, input)
    213 def forward(self, input):
    214     for module in self:
--> 215         input = module(input)
    216     return input

File c:\\Users\\Me\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\torch\
n\\modules\\module.py:1518, in Module._wrapped_call_impl(self, *args, **kwargs)
   1516     return self._compiled_call_impl(*args, **kwargs)  # type: ignore[misc]
   1517 else:
-> 1518     return self._call_impl(*args, **kwargs)

File c:\\Users\\Me\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\torch\
n\\modules\\module.py:1527, in Module._call_impl(self, *args, **kwargs)
   1522 # If we don't have any hooks, we want to skip the rest of the logic in
   1523 # this function, and just call forward.
   1524 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
   1525         or _global_backward_pre_hooks or _global_backward_hooks
   1526         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1527     return forward_call(*args, **kwargs)
   1529 try:
   1530     result = None

File c:\\Users\\Me\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\torch\
n\\modules\\container.py:215, in Sequential.forward(self, input)
    213 def forward(self, input):
    214     for module in self:
--> 215         input = module(input)
    216     return input

File c:\\Users\\Me\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\torch\
n\\modules\\module.py:1518, in Module._wrapped_call_impl(self, *args, **kwargs)
   1516     return self._compiled_call_impl(*args, **kwargs)  # type: ignore[misc]
   1517 else:
-> 1518     return self._call_impl(*args, **kwargs)

File c:\\Users\\Me\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\torch\
n\\modules\\module.py:1527, in Module._call_impl(self, *args, **kwargs)
   1522 # If we don't have any hooks, we want to skip the rest of the logic in
   1523 # this function, and just call forward.
   1524 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
   1525         or _global_backward_pre_hooks or _global_backward_hooks
   1526         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1527     return forward_call(*args, **kwargs)
   1529 try:
   1530     result = None

File c:\\Users\\Me\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\torch\
n\\modules\\conv.py:460, in Conv2d.forward(self, input)
    459 def forward(self, input: Tensor) -> Tensor:
--> 460     return self._conv_forward(input, self.weight, self.bias)

File c:\\Users\\Me\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\torch\
n\\modules\\conv.py:456, in Conv2d._conv_forward(self, input, weight, bias)
    452 if self.padding_mode != 'zeros':
    453     return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode),
    454                     weight, bias, self.stride,
    455                     _pair(0), self.dilation, self.groups)
--> 456 return F.conv2d(input, weight, bias, self.stride,
    457                 self.padding, self.dilation, self.groups)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant