- New features
- perf(sampler): when in distribued, set train_sampler be shuffle=True. 80f35daee50e78b
- perf(train.py): add device setting for single GPU training. 932e466f5
- perf(model): update DDP(model) use. c25110795c
- Bug fixes
- Breaking changes.
- New features
- build(python): update requirements.txt. aa196099a
- Bug fixes
- Breaking changes.
- New features
- build(python): update setup.py INSTALL_REQUIRES. 3ce08a61b1
- fix(setup.py): fix INSTALL_REQUIRES settings. 03050ebc
- Bug fixes
- Breaking changes.
- New features
- perf(train): convert nvidia/apex to torch.cuda.apex. d165dbc23ad
- Bug fixes
- fix(tools): update train.sh and eval.sh. 7ca74fc5d86
- Breaking changes.
- New features
- fix(transform): fix Normalize mean/std with max_value use. 51fc80d2
- Bug fixes
- Breaking changes.
- New features
- fix(cccf.py): fix class_path load. 3ef83e8a7f
- Bug fixes
- Breaking changes.
- New features
- perf(dataset): update torchvision.dataset.ImageFolder and build.py use. e95f4991
- Bug fixes
- Breaking changes.
- New features
- feat(transform): add max_value param in _C.TRANSFORM.NORMALIZE. f51f304
- Bug fixes
- fix(criterion): fix SoftTargetCrossEntropy use. 04cd13c
- Breaking changes.
- New features
- feat(config): add _C.TRAIN.CALCULATE_ACCURACY. 97f3c791
- Bug fixes
- fix(trainer.py): fix mixup usage. 1140fe47
- Breaking changes.
- New features
- Bug fixes
- fix(train.py): make mixup_fn to train() and update resume() usage. b5be2ed3
- Breaking changes.
- New features
- style(models): update all use. 0467e383
- Bug fixes
- fix(soft_target_cross_entropy_loss.py): set targets to one-hot code. 08352474
- Breaking changes
- refactor(zcls2): refactor criterion/optimizer/lr_scheduler use. c740025
- New features
- feat(model): add EfficientNetLite support. 84172a15
- feat(transform): add Mixup + Cutmix support. 902a102e
- feat(criterion): add label_smoothing support. 6b4eb4eb
- feat(model): add EfficientNet. aaebc5b6
- perf(multi_step_lr.py): add cfg.LR_SCHEDULER.MULTISTEP_LR.STEP_SIZE. 2494defb
- feat(optimizer): add RMSPRop optimizer. b3669030
- Bug fixes
- Breaking changes
- New features
- Bug fixes
- Breaking changes
- New features
- feat(dataset): new Dataset CCCF. d02b2f66
- The CCCF is a custom mixed classification dataset
- Including CIFAR100/CUB-200-2011/Caltech-101/Food-101
- feat(configs): add cfg.TRAIN.TOP_K supports and reformat prec@k log. 7877607f
- chore(benchmarks): add mobilenetv2 for cifar10/cifar100/fashionmnist. ef753ed5
- feat(dataset): new Dataset CCCF. d02b2f66
- Bug fixes
- Breaking changes
- New features
- Update benchmarks (
Apex
vs.ZCls2
)
- Update benchmarks (
- Bug fixes
- Breaking changes
- Change model output type. 899c725
- New features
- Adjust
zcls2
python version constraints (python >= 3.9
topython >= 3.8
)
- Adjust
- Bug fixes
- Breaking changes.
- New features
- New-built training module, default supported (derived from
nvidia/apex
)Distributed training
Mixed-precision training
Linear warmup
Data prefetcher
- New-built model module, support
resnet(torchvision)/mobilenet(torchvision)/ghostnet(timm)
- New-built criterion module, support
CrossEntroyLoss/LargeMarginSoftmaxLoss
- New-built optimizer module, support
SGD
- New-built lr_scheduler module, support
MultiStepLR/CosineAnnealingLR
- New-built dataset module, support
CIFAR10/CIFAR100
GeneralDataset/GeneralDatasetV2
MPDataset
- New-built transform module, support (derived from
torchvision
)- Normal transform (
ConvertImageDtype/Normalize/ToPILImage/ToTensor
) - Color transform (
ColorJitter/Grayscale/RandomAutocontrast/RandomAutocontrast/RandomAdjustSharpness/RandomErasing/RandomPosterize
) - Geometric transform (
CenterCrop/RandomCrop/RandomHorizontalFlip/RandomVerticalFlip/RandomRotation/RandomResizedCrop/Resize
) - Augment (
AutoAugment/RandAugment
) - Custom (
OpenCVResize/SquarePad
)
- Normal transform (
- New-built config module (derived from
ZJCV/ZCls
) - New-built logging module (derived from
ZJCV/ZCls
)
- New-built training module, default supported (derived from
- Bug fixes
- Breaking changes.