-
Notifications
You must be signed in to change notification settings - Fork 278
/
lecture10.tex
274 lines (250 loc) · 8.47 KB
/
lecture10.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
\documentclass[aspectratio=169]{beamer}
\mode<presentation>
%\usetheme{Warsaw}
%\usetheme{Goettingen}
\usetheme{Hannover}
%\useoutertheme{default}
%\useoutertheme{infolines}
\useoutertheme{sidebar}
\usecolortheme{dolphin}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{enumerate}
%some bold math symbosl
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand{\Cor}{\mathrm{Cor}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\brho}{\boldsymbol{\rho}}
\newcommand{\bSigma}{\boldsymbol{\Sigma}}
\newcommand{\btheta}{\boldsymbol{\theta}}
\newcommand{\bbeta}{\boldsymbol{\beta}}
\newcommand{\bmu}{\boldsymbol{\mu}}
\newcommand{\bW}{\mathbf{W}}
\newcommand{\one}{\mathbf{1}}
\newcommand{\bH}{\mathbf{H}}
\newcommand{\by}{\mathbf{y}}
\newcommand{\bolde}{\mathbf{e}}
\newcommand{\bx}{\mathbf{x}}
\newcommand{\cpp}[1]{\texttt{#1}}
\newcommand{\logit}{\mathrm{logit}}
\title{Mathematical Biostatistics Boot Camp 2:
Lecture 10, Case Control Data}
\author{Brian Caffo}
\date{\today}
\institute[Department of Biostatistics]{
Department of Biostatistics \\
Johns Hopkins Bloomberg School of Public Health\\
Johns Hopkins University
}
\begin{document}
\frame{\titlepage}
%\section{Table of contents}
\frame{
\frametitle{Table of contents}
\tableofcontents
}
\section{Case-control methods}
\begin{frame}\frametitle{Case-control methods}
\begin{center}
\ttfamily
\begin{tabular}{llll}
& \multicolumn{2}{c}{Lung cancer} & \\ \cline{2-3}
Smoker & Cases & Controls & Total \\ \hline
Yes & 688 & 650 & 1338 \\
No & 21 & 59 & 80 \\ \hline
& 709 & 709 & 1418
\end{tabular}
\normalfont
\end{center}
\begin{itemize}
\item Case status obtained from records
\item Cannot estimate $P(\mbox{Case} ~|~ \mbox{Smoker})$
\item Can estimate $P(\mbox{Smoker} ~|~ \mbox{Case})$
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Continued}
\begin{itemize}
\item Can estimate odds ratio b/c
\begin{eqnarray*}
& &\frac{Odds(\mbox{case} ~|~ \mbox{smoker})}{Odds(\mbox{case} ~|~ \mbox{smoker}^c)} \\ \\
& = & \frac{Odds(\mbox{smoker} ~|~ \mbox{case})}{Odds(\mbox{smoker} ~|~ \mbox{case}^c)}\\
\end{eqnarray*}
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Proof}
$C$ - case, $S$ - smoker
\begin{eqnarray*}
& &\frac{Odds(\mbox{case} ~|~ \mbox{smoker})}{Odds(\mbox{case} ~|~ \mbox{smoker}^c)}\\ \\
& = & \frac{P(C ~ | ~ S) / P(\bar{C} ~|~ S)}{P(C ~|~ \bar{S})/P(\bar{C} ~|~ \bar{S})} \\ \\
& = & \frac{P(C, S) / P(\bar{C}, S)}{P(C, \bar{S})/P(\bar{C}, \bar{S})} \\ \\
& = & \frac{P(C, S) P(\bar{C}, \bar{S})}{P(C,\bar{S}) P(\bar{C}, S)}
\end{eqnarray*}
Exchange $C$ and $S$ and the result is obtained
\end{frame}
\begin{frame}\frametitle{Notes}
\begin{itemize}
\item Sample $OR$ is $\frac{n_{11}n_{22}}{n_{12}n_{21}}$
\item Sample $OR$ is unchanged if a row or column is multiplied by a constant
\item Invariant to transposing
\item Is related to $RR$
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Notes continued}
\begin{eqnarray*}
OR & = & \frac{P(S ~|~ C)/P(\bar{S} ~|~ C)}{P(S ~|~ \bar{C})/P(\bar{S} ~|~ \bar{C})} \\ \\
& = & \frac{P(C ~|~ S)/P(\bar{C} ~|~ S)}{P(C ~|~ \bar{S})/P(\bar{C} ~|~ \bar{S})} \\ \\
& = & \frac{P(C ~|~ S)}{P(C ~|~ \bar{S})}
\frac{P(\bar{C} ~|~ \bar{S})}{P(\bar{C} ~|~ S)} \\ \\
& = & RR \times \frac{1 - P(C ~|~ \bar{S})}{1 - P(C ~|~ S)}
\end{eqnarray*}
\begin{itemize}
\item $OR$ approximate $RR$ if $P(C ~|~ \bar{S})$ and $P(C ~|~ S)$ are small
(or if they are nearly equal)
\end{itemize}
\end{frame}
\section{Rare disease assumption}
\begin{frame}\frametitle{Rare disease assumption}
\begin{center}
\ttfamily
\begin{tabular}{llll}
&\multicolumn{2}{c}{Disease} & \\ \cline{2-3}
Exposure & Yes & No & Total \\ \hline
Yes & 9 & 1 & 10 \\
No & 1 & 999 & 1000 \\ \hline
& 10 & 1000 & 1010
\end{tabular}
\normalfont
\end{center}
\begin{itemize}
\item Cross-sectional data
\item $\hat{P(D)} = 10 / 1010 \approx .01$
\item $\hat{OR} = (9 \times 999) / (1 \times 1) = 8991$
\item $\hat{RR} = (9 / 10) / (1 / 1000) = 900$
\item $D$ is rare in the sample
\item $D$ is not rare among the exposed
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Notes}
\begin{itemize}
\item $OR = 1$ implies no association
\item $OR > 1$ positive association
\item $OR < 1$ negative association
\item For retrospective CC studies, $OR$
can be interpreted prospectively
\item For diseases that are rare among \\
the cases and controls, the $OR$ \\ approximates
the $RR$
\item Delta method SE for log $OR$ is
$$
\sqrt{\frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}}
$$
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Example}
\begin{center}
\ttfamily
\begin{tabular}{llll}
& \multicolumn{2}{c}{Lung cancer} & \\ \cline{2-3}
Smoker & Cases & Controls & Total \\ \hline
Yes & 688 & 650 & 1338 \\
No & 21 & 59 & 80 \\ \hline
& 709 & 709 & 1418
\end{tabular}
\normalfont
\end{center}
~\footnote{Data from Agresti, Categorical Data Analysis, second edition}
\begin{itemize}
\item $\hat{OR} = \frac{688 \times 59}{21 \times 650} = 3.0$
\item $\hat{SE}_{\log \hat{OR}} = \sqrt{\frac{1}{688} + \frac{1}{650} + \frac{1}{21} + \frac{1}{59}} = .26$
\item $CI = \log(3.0) \pm 1.96 \times .26 = [.59, 1.61]$
\item The estimated odds of lung cancer for smokers are $3$ times
that of the odds for non-smokers with an interval of
$[\exp(.59), \exp(1.61)] = [1.80, 5.00]$
\end{itemize}
\end{frame}
\section{Exact inference for the odds ratio}
\begin{frame}\frametitle{Exact inference for the OR}
\begin{center}
\ttfamily
\begin{tabular}{llll}
& \multicolumn{2}{c}{Lung cancer} & \\ \cline{2-3}
Smoker & Cases & Controls & Total \\ \hline
Yes & 688 & 650 & 1338 \\
No & 21 & 59 & 80 \\ \hline
& 709 & 709 & 1418
\end{tabular}
\normalfont
\end{center}\ \\
\begin{itemize}
\item $X$ the number of smokers for the cases
\item $Y$ the number of smokers for the controls
\item Calculate an exact CI for the odds ratio
\item Have to eliminate a nuisance parameter
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Notation}
\begin{itemize}
\item $\logit(p) = \log\{p / (1 - p)\}$ is the {\bf log-odds}
\item Differences in $\logit s$ are log-odds {\em ratios}
\item $\logit\{P(\mbox{Smoker} ~|~ \mbox{Case})\} = \delta$
\begin{itemize}
\item $P(\mbox{Smoker} ~|~ \mbox{Case}) = e^\delta /(1 + e^\delta)$
\end{itemize}
\item $\logit\{P(\mbox{Smoker} ~|~ \mbox{Control})\} = \delta + \theta$
\begin{itemize}
\item $P(\mbox{Smoker} ~|~ \mbox{Control}) = e^{\delta + \theta} / (1 + e^{\delta+\theta})$ \end{itemize}
\item $\theta$ is the log-odds ratio
\item $\delta$ is the nuisance parameter
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Notation}
\begin{itemize}
\item $X$ is binomial with $n_1$ trials and success probability $e^\delta /(1 + e^\delta)$
\item $Y$ is binomial with $n_2$ trials and success probability $e^{\delta + \theta} / (1 + e^{\delta+\theta})$
\end{itemize}
\begin{eqnarray*}
P(X = x) & = &
\left(\begin{array}{c} n_1 \\ x \end{array}\right)\left\{\frac{e^\delta}{1 + e^\delta}\right\}^x
\left\{\frac{1}{1 + e^\delta}\right\}^{n_1-x} \\
& = & \left(\begin{array}{c} n_1 \\ x \end{array}\right)e^{x\delta}
\left\{\frac{1}{1 + e^\delta}\right\}^{n_1}
\end{eqnarray*}
\end{frame}
\begin{frame}
$$
P(X = x) = \left(\begin{array}{c} n_1 \\ x \end{array}\right)e^{x\delta}
\left\{\frac{1}{1 + e^\delta}\right\}^{n_1}
$$ \ \\
$$
P(Y = z-x) = \left(\begin{array}{c} n_2 \\ z-x \end{array}\right)e^{(z-x)\delta + (z-x)\theta}
\left\{\frac{1}{1 + e^{\delta+\theta}}\right\}^{n_2}
$$\ \\
$$
P(X+Y = z) = \sum_u P(X = u)P(Y = z - u)
$$ \ \\
$$
P(X = x ~|~ X+Y = z) = \frac{P(X = x)P(Y = z - x)}{\sum_u P(X = u) P(Y = z-u)}
$$
\end{frame}
\begin{frame}\frametitle{Non-central hypergeometric distribution}
$$
P(X = x ~|~ X+Y = z; \theta)
= \frac{
\left(\begin{array}{c} n_1 \\ x \end{array}\right)
\left(\begin{array}{c} n_2 \\ z-x \end{array}\right) e^{x\theta}
}{
\sum_u
\left(\begin{array}{c} n_1 \\ u \end{array}\right)
\left(\begin{array}{c} n_2 \\ z-u \end{array}\right) e^{u\theta}
}
$$
\begin{itemize}
\item $\theta$ is the log odds ratio
\item This distribution is used to calculate exact hypothesis tests for
$H_0:\theta = \theta_0$
\item Inverting exact tests yields exact confidence intervals for the odds
ratio
\item Simplifies to the hypergeometric distribution for $\theta = 0$
\end{itemize}
\end{frame}
\end{document}