forked from mehedihasanbijoy/DPCSpell
-
Notifications
You must be signed in to change notification settings - Fork 0
/
corrector.py
192 lines (161 loc) · 6.88 KB
/
corrector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from utils import (
word2char, basic_tokenizer, count_parameters, initialize_weights,
save_model, load_model, error_df, train_valid_test_df, mask2str,
error_blank, find_len, error_df_2
)
from transformer import (
Encoder, EncoderLayer, MultiHeadAttentionLayer,
PositionwiseFeedforwardLayer, Decoder, DecoderLayer,
Seq2Seq
)
from pipeline import train, evaluate
from metrics import evaluation_report
import pandas as pd
from sklearn.model_selection import train_test_split
from torchtext.legacy.data import Field, TabularDataset, BucketIterator
import torch
import torch.nn as nn
import os
import gc
from tqdm import tqdm
import sys
import argparse
import warnings as wrn
wrn.filterwarnings('ignore')
import os
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--HID_DIM", help="Hidden Dimension", type=int, default=128, choices=[64, 128, 256])
parser.add_argument("--ENC_LAYERS", help="Number of Encoder Layers", type=int, default=3, choices=[3, 5, 7])
parser.add_argument("--DEC_LAYERS", help="Number of Decoder Layers", type=int,default=3, choices=[3, 5, 7])
parser.add_argument("--ENC_HEADS", help="Number of Encoder Attention Heades", type=int, default=8, choices=[4, 6, 8])
parser.add_argument("--DEC_HEADS", help="Number of Decoder Attention Heades", type=int, default=8, choices=[4, 6, 8])
parser.add_argument("--ENC_PF_DIM", help="Encoder PF Dimension", type=int, default=256, choices=[64, 128, 256])
parser.add_argument("--DEC_PF_DIM", help="Decoder PF Dimesnion", type=int, default=256, choices=[64, 128, 256])
parser.add_argument("--ENC_DROPOUT", help="Encoder Dropout Ratio", type=float, default=0.1, choices=[0.1, 0.2, 0.5])
parser.add_argument("--DEC_DROPOUT", help="Decoder Dropout Ratio", type=float, default=0.1, choices=[0.1, 0.2, 0.5])
parser.add_argument("--CLIP", help="Gradient Clipping at", type=float, default=1, choices=[.1, 1, 10])
parser.add_argument("--N_EPOCHS", help="Number of Epochs", type=int, default=100)
parser.add_argument("--LEARNING_RATE", help="Learning Rate", type=float, default=0.0005, choices=[0.0005, 0.00005, 0.000005])
args = parser.parse_args()
SEED = 1234
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
df = pd.read_csv('./Dataset/purificator_preds.csv')
df_copy = df.copy()
df['Word'] = df['Word'].apply(word2char)
df['Error'] = df['Error'].apply(word2char)
df['ErrorBlanksActual'] = df['ErrorBlanksActual'].apply(word2char)
df['ErrorBlanksPredD1'] = df['ErrorBlanksPredD1'].apply(word2char)
df['ErrorBlanksPredD2'] = df['ErrorBlanksPredD2'].apply(word2char)
df['MaskErrorBlank'] = '<CLS> ' + df['Error'] + ' <SEP> ' + df['ErrorBlanksPredD2'] + ' <SEP>'
df['Length'] = df['MaskErrorBlank'].apply(find_len)
df = df.loc[df['Length'] <= 48] # 48 works
# df = df.iloc[:, [1, -2, 8]] # word - maskerrorblank - errortype
df = df[['Word', 'MaskErrorBlank', 'ErrorType']]
train_df, valid_df, test_df = train_valid_test_df(df, test_size=.15, valid_size=.05)
train_df.to_csv('./Dataset/train.csv', index=False)
valid_df.to_csv('./Dataset/valid.csv', index=False)
test_df.to_csv('./Dataset/test.csv', index=False)
SRC = Field(
tokenize=basic_tokenizer, lower=False,
init_token='<sos>', eos_token='<eos>', batch_first=True
)
TRG = Field(
tokenize=basic_tokenizer, lower=False,
init_token='<sos>', eos_token='<eos>', batch_first=True
)
fields = {
'MaskErrorBlank': ('src', SRC),
'Word': ('trg', TRG)
}
train_data, valid_data, test_data = TabularDataset.splits(
path='./Dataset',
train='train.csv',
validation='valid.csv',
test='test.csv',
format='csv',
fields=fields
)
SRC.build_vocab(train_data, min_freq=100)
TRG.build_vocab(train_data, min_freq=50)
# ------------------------------
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
BATCH_SIZE = 512 # 512
# ------------------------------
INPUT_DIM = len(SRC.vocab)
OUTPUT_DIM = len(TRG.vocab)
# ------------------------------
HID_DIM = int(args.HID_DIM)
ENC_LAYERS = int(args.ENC_LAYERS)
DEC_LAYERS = int(args.DEC_LAYERS)
ENC_HEADS = int(args.ENC_HEADS)
DEC_HEADS = int(args.DEC_HEADS)
ENC_PF_DIM = int(args.ENC_PF_DIM)
DEC_PF_DIM = int(args.DEC_PF_DIM)
ENC_DROPOUT = float(args.ENC_DROPOUT)
DEC_DROPOUT = float(args.DEC_DROPOUT)
CLIP = float(args.CLIP)
N_EPOCHS = int(args.N_EPOCHS)
LEARNING_RATE = float(args.LEARNING_RATE)
# ------------------------------
PATH = './Checkpoints/corrector.pth'
# ------------------------------
gc.collect()
torch.cuda.empty_cache()
# -----------------------------
train_iterator, valid_iterator, test_iterator = BucketIterator.splits(
(train_data, valid_data, test_data),
batch_size=BATCH_SIZE,
sort_within_batch=True,
sort_key=lambda x: len(x.src),
device=DEVICE
)
enc = Encoder(
INPUT_DIM, HID_DIM, ENC_LAYERS, ENC_HEADS, ENC_PF_DIM,
ENC_DROPOUT, DEVICE
)
dec = Decoder(
OUTPUT_DIM, HID_DIM, DEC_LAYERS, DEC_HEADS, DEC_PF_DIM,
DEC_DROPOUT, DEVICE
)
SRC_PAD_IDX = SRC.vocab.stoi[SRC.pad_token]
TRG_PAD_IDX = TRG.vocab.stoi[TRG.pad_token]
model = Seq2Seq(enc, dec, SRC_PAD_IDX, TRG_PAD_IDX, DEVICE).to(DEVICE)
model.apply(initialize_weights)
# print(f'The model has {count_parameters(model):,} trainable parameters')
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
criterion = nn.CrossEntropyLoss(ignore_index=TRG_PAD_IDX)
# criterion = nn.BCEWithLogitsLoss()
epoch = 1
best_loss = 1e10
if os.path.exists(PATH):
checkpoint, epoch, train_loss = load_model(model, PATH)
best_loss = train_loss
# model.resize_token_embeddings(len(TRG.vocab))
for epoch in range(epoch, N_EPOCHS):
print(f"Epoch: {epoch} / {N_EPOCHS}")
train_loss = train(model, train_iterator, optimizer, criterion, CLIP)
print(f"Train Loss: {train_loss:.4f}")
if train_loss < best_loss:
best_loss = train_loss
save_model(model, train_loss, epoch, PATH)
# ---------------------
error_types = sorted(list(set(df.iloc[:, -1].values)))
for error_name in error_types:
print(f'------\nError Type: {error_name}\n------')
error_df_2(df, error_name)
error_data, _ = TabularDataset.splits(
path='./Dataset',
train='error.csv',
test='error.csv',
format='csv',
fields=fields
)
eval_df = evaluation_report(error_data, SRC, TRG, model, DEVICE)
error_name = error_name.replace(' ', '').replace('(', '').replace(')', '')
print('\n\n')
# ---------------------
if __name__ == '__main__':
main()