-
Notifications
You must be signed in to change notification settings - Fork 22
/
test.py
89 lines (81 loc) · 2.85 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
"""
/*****************************************************************************/
Test for BatchNorm2dSync with multi-gpu
/*****************************************************************************/
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
sys.path.append("./")
from modules import nn as NN
torch.backends.cudnn.deterministic = True
def init_weight(model):
for m in model.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, np.sqrt(2. / n))
elif isinstance(m, NN.BatchNorm2d) or isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
num_gpu = torch.cuda.device_count()
print("num_gpu={}".format(num_gpu))
if num_gpu < 2:
print("No multi-gpu found. NN.BatchNorm2d will act as normal nn.BatchNorm2d")
m1 = nn.Sequential(
nn.Conv2d(3, 3, 1, 1, bias=False),
nn.BatchNorm2d(3),
nn.ReLU(inplace=True),
nn.Conv2d(3, 3, 1, 1, bias=False),
nn.BatchNorm2d(3),
).cuda()
torch.manual_seed(123)
init_weight(m1)
m2 = nn.Sequential(
nn.Conv2d(3, 3, 1, 1, bias=False),
NN.BatchNorm2d(3),
nn.ReLU(inplace=True),
nn.Conv2d(3, 3, 1, 1, bias=False),
NN.BatchNorm2d(3),
).cuda()
torch.manual_seed(123)
init_weight(m2)
m2 = nn.DataParallel(m2, device_ids=range(num_gpu))
o1 = torch.optim.SGD(m1.parameters(), 1e-3)
o2 = torch.optim.SGD(m2.parameters(), 1e-3)
y = torch.ones(num_gpu).float().cuda()
torch.manual_seed(123)
for _ in range(100):
x = torch.rand(num_gpu, 3, 2, 2).cuda()
o1.zero_grad()
z1 = m1(x)
l1 = F.mse_loss(z1.mean(-1).mean(-1).mean(-1), y)
l1.backward()
o1.step()
o2.zero_grad()
z2 = m2(x)
l2 = F.mse_loss(z2.mean(-1).mean(-1).mean(-1), y)
l2.backward()
o2.step()
print(m2.module[1].bias.grad - m1[1].bias.grad)
print(m2.module[1].weight.grad - m1[1].weight.grad)
print(m2.module[-1].bias.grad - m1[-1].bias.grad)
print(m2.module[-1].weight.grad - m1[-1].weight.grad)
m2 = m2.module
print("===============================")
print("m1(nn.BatchNorm2d) running_mean",
m1[1].running_mean, m1[-1].running_mean)
print("m2(NN.BatchNorm2d) running_mean",
m2[1].running_mean, m2[-1].running_mean)
print("m1(nn.BatchNorm2d) running_var", m1[1].running_var, m1[-1].running_var)
print("m2(NN.BatchNorm2d) running_var", m2[1].running_var, m2[-1].running_var)
print("m1(nn.BatchNorm2d) weight", m1[1].weight, m1[-1].weight)
print("m2(NN.BatchNorm2d) weight", m2[1].weight, m2[-1].weight)
print("m1(nn.BatchNorm2d) bias", m1[1].bias, m1[-1].bias)
print("m2(NN.BatchNorm2d) bias", m2[1].bias, m2[-1].bias)