Skip to content

CIKM 2021 Full Paper: FedMatch: Federated Learning Over Heterogeneous Question Answering Data

License

Notifications You must be signed in to change notification settings

Chriskuei/FedMatch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FedMatch

Repo for our paper, FedMatch: Federated Learning Over Heterogeneous Question Answering Data, by Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Yixing Fan, Xueqi Cheng.

Overview

Overview

We are excited to present our novel Federated Matching framework for QA, named FedMatch, with a backbone-patch architecture. It could leverage all the available QA data to boost the model training and remove the need to directly exchange the privacy-sensitive QA data among different participants. By decomposing the QA model in each participant into a shared module and a private module, it is able to leverage the common knowledge in different participants and capture the information of the local data in each participant. Empirical results showed that our method can effectively improve the perfor- mance by exploiting the useful information of multiple participants in a privacy-preserving way.

Setup

  • Install python >= 3.6 and pip
  • pip install -r requirements.txt
  • install PyTorch

Download

Acknowledgements

Citation

If you find our work useful, please consider citing our paper:

@inproceedings{chen2021fedmatch,
  title={FedMatch: Federated Learning Over Heterogeneous Question Answering Data},
  author={Chen, Jiangui and Zhang, Ruqing and Guo, Jiafeng and Fan, Yixing and Cheng, Xueqi},
  booktitle={Proceedings of the 30th ACM International Conference on Information \& Knowledge Management},
  pages={181--190},
  year={2021}
}

License

This project is under Apache License 2.0.

About

CIKM 2021 Full Paper: FedMatch: Federated Learning Over Heterogeneous Question Answering Data

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages