-
Notifications
You must be signed in to change notification settings - Fork 0
NSAPH/h2odyssey
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
# h2odyssey An R package to deploy h2o on the Harvard Odyssey cluster ## Installation of R packages on Odyssey Create the folder `apps/R` in your home folder ```bash mkdir apps mkdir apps/R ``` Modify your `.bashrc` file as follows: ```bash # .bashrc # Source global definitions if [ -f /etc/bashrc ]; then . /etc/bashrc fi # User specific aliases and functions source new-modules.sh module load R # replace username with your username. You may have to change home03 too. export R_LIBS_USER=/n/home03/username/apps/R:$R_LIBS_USER ``` ## Installation of `h2odyssey` In an R session: ```r devtools::install_github("NSAPH/h2odyssey") ``` ## Running `h2odyssey` on Harvard Odyssey You first need to start a SLURM job. ```bash # Example: we request a total of 2GB on 2 nodes with 20 cores per node in the shared partition # srun -p shared --mem 2g -t 0-06:00 -c 20 -N 2 --pty /bin/bash # Example: we request a total of 300GB on 2 nodes with 32 cores per node in the bigmem partition # srun -p bigmem --pty --mem 300g -t 0-06:00 -c 32 -N 2 /bin/bash ``` ## TODO: `screen` To use `screen`: ```bash # srun -p shared --pty --mem 2g -t 0-06:00 -c 20 -N 2 R ``` From a compute node: ```r library(h2odyssey) # memory per node in GB # start and connect to an h2o cluster with 2GB of RAM per node start_h2o_cluster(memory = 2) # Code here... h2o.shutdown() ``` You can try h2o examples: https://github.com/h2oai/h2o-tutorials/blob/master/h2o-open-tour-2016/chicago/intro-to-h2o.R https://github.com/h2oai/h2o-tutorials/blob/master/tutorials/ensembles-stacking/stacked_ensemble_h2o_xgboost.Rmd
About
An R package to deploy h2o on the Harvard Odyssey cluster
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published