Skip to content

A feature embedding method for biological sequences

Notifications You must be signed in to change notification settings

UmbertoDellaMonica/lyn2vec

 
 

Repository files navigation

lyn2vec

A feature embedding method for biological sequences

Pre-requisites

Most of the methods are implemented in Python using scikit-learn (and utility functions from numpy and pandas). For ease of reproduction, the exact versions of the packages can be installed through the conda package manager by installing miniconda and replicating the environment using the file spec-file.txt in this repository with the command:

conda create --name lyndonenv --file spec-file.txt

Data

Due to size constraints, data is available at this URL. The dataset is composed of the following two files:

  • transcripts_genes.fa.gz, containing the sequences of the transcripts used for training the model and that should be placed (and gunzip-ed) in the training directory.
  • sample_10M_genes.fastq.gz, containing a sample of 10M 100-bp long reads simulated from Human chromosomes 1, 17, and 21 using Flux Simulator. This file should be placed (and gunzip-ed) in the testing directory.

Reproduction

To carry out an experiment, follows the steps:

  • Compute fingerprints

    - `method`   : experiment_fingerprint_1f_np_step in SCRIPT fingerprint.py
    
    - `cmd line` : python fingerprint.py --type 1f_np --path training/ 
                 --fasta transcripts_genes.fa --type_factorization ICFL_COMB 
                 -n 8
    
    - `return`   : for type_factorization, computes a "fingerprint" file containing 
                   a row for each read, with the format "IDGENE FINGERPRINT", where 
                   "FINGERPRINT" is the fingerprint of the read
    

    N.B.

    - `--fact no_create` : do not create a file containing the factors corresponding 
                      to the fingerprint fingerprint (default: --fact create)
    - `--shift no_shift` : do not generate the shifts of lengths 100 (default: --shift shift)
    - `--filter no_list` : do not consider only the reads for the genes contained in 
                      the file list_experiment.txt (default: --filter no_list)
    
  • Build datasets

    - `method`   : experiment_dataset_step in SCRIPT training_mp.py
    
    - `cmd line` : python training.py --step dataset --path training/ 
                   --type_factorization ICFL_COMB  --k_value 5 n 8
    
    - `return`   : for type_factorization it uses the corresponding 
                   "fingerprint" file to generate a dataset for each value of k. 
                   Such a dataset will be splitted in 2 pickle files: 
                   dataset_X_factorization which contain the samples, and 
                   dataset_y_factorization which contains the corresponding labels
    
  • Train K-fingers classifiers

    - `method`   : experiment_training_step in SCRIPT training.py
    
    - `cmd line` : python training.py --step train --path training/ --k_value 5
                 --type_factorization ICFL_COMB  --model RF -n 4
    
    - `return`   : for each trained classifier save a PICKLE file 
                 (ex. RF_ICFL_COMB_K5.pickle) and the report CSV containing 
                 the metrics for the performance in training 
                 (ex. RF_kfinger_clsf_report_ICFL_COMB_K5.csv)
    
  • Reads classification

    pre-settings:

    - A k-finger trained classifier (ex. RF_ICFL_COMB_K5.pickle)
    - The dataset for the k-finger trained classifier chosen 
       (ex. dataset_X_ICFL_COMB_K5.pickle, dataset_y_ICFL_COMB_K5.pickle)
    - The fingerprint and fact_fingerprint corresponding to the type of 
       factorization for which the chosen classifier was trained 
       (ex. fingerprint_ICFL_COMB.txt e fact_fingerprint_ICFL_COMB.txt)
    

    RF Fingerprint classifier:

      `Training:`
      ```
        - `method`    : training_train_RF_fingerprint_step in SCRIPT training.py
    
        - `cmd line`  : python training.py --step train_RF_fingerprint 
                      --path training/ --model RF_FINGERPRINT
                      --type_factorization ICFL_COMB -n 4
    
        - `return`    : save the PICKLE RF FINGERPRINT trained 
                      (ex. RF_fingerprint_classifier_ICFL_COMB.pickle)
                      and the corresponding CSV report 
                      (RF_fingerprint_clsf_report_ICFL_COMB.csv")
      ```    
      
      `Testing reads:`
      ``` 
        - `method`    : testing_reads_RF_fingerprint_step in SCRIPT testing.py
    
        - `cmd line`  : python testing.py --step test_RF_fingerprint --path testing/ 
                        --rf_fingerprint_model RF_fingerprint_classifier_ICFL_COMB.pickle 
                        --fasta sample_10M_genes.fastq.gz 
                        --type_factorization ICFL_COMB -n 4
    
        - `return`    : creates the file test_rf_fingerprint_result.txt containing 
                        a row for each read in the FASTA file. 
      ```
    

    Rule-based read classifier:

      ```
      - `method`    : testing_reads_majority_step in SCRIPT testing.py
    
      - `cmd line`  : python testing.py --step test_majority --path testing/ 
                      --fasta sample_10M_genes.fastq.gz --best_model RF_ICFL_COMB_K5.pickle 
                      --criterion majority --type_factorization ICFL_COMB --k_value 5 -n 4
    
      - `return`    : creates a file test_majority_result.txt containing a row 
                      for each read in the FASTA file. 
      ```
    
  • Compute metrics:

     ``` 
     - `cmd line`   : python metrics.py --path fingerprint/test/ 
                      --file test_majority_result_no_thresholds_list.txt 
                      --problem classification
     ```
    

About

A feature embedding method for biological sequences

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%