Skip to content

DAS-MIL: Distilling Across Scales for MILClassification of Histological WSIs

License

Notifications You must be signed in to change notification settings

aimagelab/mil4wsi

Repository files navigation

Introduction

Welcome to the mil4wsi Framework – your gateway to state-of-the-art Multiple Instance Learning (MIL) model implementations for gigapixel whole slide images. This comprehensive open-source repository empowers researchers, developers, and enthusiasts to explore and leverage cutting-edge MIL techniques.

Automatic Installation

conda create -n wsissl python=3.10
conda activate wsissl
conda env update --file environment.yml

Manual Installation

create Environment

conda create -n ENV_NAME python=3.10
conda activate ENV_NAME
  1. Install torch; 2) Install pytorch_geometric; 3) Install additional packages for visualization and log as:
pip install submitit joblib pandas wandb openslide-python==1.2.0 scikit-image wsiprocess scikit-learn matplotlib nystrom_attention

Example with torch==2.4.0; cuda==11.8

conda create -n ENV_NAME python=3.10 && conda activate ENV_NAME && pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 && pip install torch_geometric pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.4.0+cu118.html && pip install submitit joblib pandas wandb openslide-python==1.2.0 scikit-image wsiprocess scikit-learn matplotlib nystrom_attention

Data Preprocessing

This work uses CLAM to filter out background patches. After the .h5 coordinate generation, use:

Available Models

  • MaxPooling
  • MeanPooling
  • ABMIL
  • DSMIL
  • DASMIL
  • BUFFERMIL
  • TRANSMIL
  • HIPT

DASMIL

@inproceedings{Bontempo2023_MICCAI,
    author={Bontempo, Gianpaolo and Porrello, Angelo and Bolelli, Federico and Calderara, Simone and Ficarra, Elisa},
    title={{DAS-MIL: Distilling Across Scales for MIL Classification of Histological WSIs}},
    booktitle={Medical Image Computing and Computer Assisted Intervention – MICCAI 2023},
    pages={248--258},
    year=2023,
    month={Oct},
    publisher={Springer},
    doi={https://doi.org/10.1007/978-3-031-43907-0_24},
    isbn={978-3-031-43906-3}
}


@ARTICLE{Bontempo2024_TMI,
  author={Bontempo, Gianpaolo and Bolelli, Federico and Porrello, Angelo and Calderara, Simone and Ficarra, Elisa},
  journal={IEEE Transactions on Medical Imaging}, 
  title={A Graph-Based Multi-Scale Approach With Knowledge Distillation for WSI Classification}, 
  year={2024},
  volume={43},
  number={4},
  pages={1412-1421},
  keywords={Feature extraction;Proposals;Spatial resolution;Knowledge engineering;Graph neural networks;Transformers;Prediction algorithms;Whole slide images (WSIs);multiple instance learning (MIL);(self) knowledge distillation;weakly supervised learning},
  doi={10.1109/TMI.2023.3337549}}

Training

python main.py --datasetpath DATASETPATH --dataset [cam or lung]

Reproducibility

Pretrained models

DINO Camelyon16 DINO LUNG
x5 ~0.65GB x5 ~0.65GB
x10 ~0.65GB x10 ~0.65GB
x20 ~0.65GB x20 ~0.65GB
DASMIL Camelyon16 DASMIL LUNG
model ~9MB model ~15MB
ACC: 0.945 ACC: 0.92
AUC: 0.967 AUC: 0.966

Pytorch Geometric - Extracted Features

Camelyon16 LUNG
Dataset ~4.25GB Dataset ~17.5GB

Eval

setup checkpoints and datasets paths in utils/experiment.py then

python eval.py --datasetpath DATASETPATH --checkpoint CHECKPOINTPATH --dataset [cam or lung]

Contributing

We encourage and welcome contributions from the community to help improve the MIL Models Framework and make it even more valuable for the entire machine-learning community.